

EFFECTIVE: JANUARY 2004 CURRICULUM GUIDELINES

 A. Division:
 Instructional
 Effective Date: January 2004

 B. Department / Program Area:
 Science and Technology
 Revision
 X
 New Course

 If Revisio
 ction(s)

ion:

This course is intended for students who have not taken Physics previously or who have taken some secondary school Physics and want a review. It can serve as one of the prerequisites for the university transfer course, PHYS 107. It is recommended that Math .02 0 0 10.02 274.9992 (etry;)Tj-0.0014 Tc 0.0029 Tw 10.02 0 0 10.02 108997 406

Allocation of Contact Hours to Type of Instruction / Learning Settings

Primary Methods of Instructional Delivery and/or Learning Settings:

L:

 Lecture / Laboratory

 Number of Contact Hours: (per week / semester for each descriptor)

 4/3 per week

 K:

 Mumber of Weeks per Semester:

 15

 PLEASE IN

M:	Course Objectives / Learning Outcomes
	 Upon completion of the course the student will be able to: explain/define terms and quantities encountered: displacement, velocity/speed, acceleration, free-fall, scalar, vector resultant, vector component, equilibrium, mass, weight, force, free body diagram, center of gravity, torque, lever arm, friction, work, kinetic energy, potential energy, power, mechanical advantage, momentum, impulse, moment of inertia, angular displacement, angular velocity, angular acceleration, centripetal force, centripetal acceleration, density, pressure, fluid pressure, temperature, thermal energy, specific heat, latent heat, heat conduction, convection, radiation, electric charge, electrical conductor, insulator, electric field, electric potential difference/voltage, resistance, current, electromotive force. identify the appropriate SI units for the quantities encountered. state the major principles/laws encountered: first and second conditions for equilibrium, Newton's three laws of motion, law of universal gravitation, work-energy theorem, principles of conservation of energy and momentum, Archimedes' principle, Coulomb's law, Ohm's law. add vector quantities using the geometric and component (trigonometry) methods. apply the laws/principles to the solution of numerical problems encountered in the textbook and in the laboratory. perform basic experiments in mechanics, heat and electricity and analyze the data obtained using appropriate graphing techniques, scientific notation, significant figures and experimental uncertainty considerations.
N:	Course Content 2. Heat physical quantities and SI units temperature and thermometers velocity and acceleration latent heats and phase changes gravitation heat transfer mechanisms Newton's laws of motion heat transfer mechanisms vectors versus scalars heat transfer mechanisms vector addition first condition for equilibrium friction work, energy and power conservation of energy simple machines momentum and impulse rotational motion centriptal force and acceleration density pressure Archimede's principle 3. Electricity electric field Potential difference Coulomb's law Electric field Potential difference
0:	Resistance and Ohm's law Electric power Simple circuit analysis Methods of Instruction

Classroom time will be divided between the presentation and discussion of basic concepts on the one hand and

P: Textbooks and Materials to be Purchased by Students

L.A. Bloomfield, <u>How Things Work</u>: The Physics of Everyday Life, 2nd Edition, Wiley, 2001 Douglas College, <u>Physics 104 Laboratory Experiments</u>

Q: Means of Assessment

The final grade for the course will be based upon the following components:

- a) final examination minimum of 30%/maximum of 40%
- b) two tests administered during the semester minimum of 15% each/maximum of 25% each
- c) submitted laboratory reports 20%
- d) quizzes, assignments maximum of 10%

R: Prior Learning Assessment and Recognition: specify whether course is open for PLAR

Not open for PLAR

Course Designer(s)

Education Council / Curriculum Committee Representative

Dean / Director

Registrar

© Douglas College. All Rights Reserved.